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DISPLACEMENT EFFECT OF A THREE-DIMENSIONAL BOUNDARY LAYER!

By FrankLin K. Moors

SUMMARY

A method is described for determining the ‘“‘displacement
surface” of a known three-dimensional compressible boundary-
layer flow in terms of the mass-flow defects associated with the
profiles of the two velocity components parallel to the surface.
The result is a generalization of the plane flow concept of dis-
placement thickness introduced in order to describe how a thin
boundary layer distorts the outer nonwiscous flow.

The height of the displacement surface above the body surface
Jor flow about ¢ yawed infinite cylinder 18 shown o be equal to
the height characterizing the mass-flow defect of the chordwise
velocity profile.  The displacement-swrface height s shown to
differ, in general, from that associated with the resultant mass-
flow defect, even at stagnation points of the secondary flow.
Numerical ralues are found for the known three-dimensional
boundam_/-layer Slow about a cone at a small angle of attack to
@ supersonic siream.

INTRODUCTION

The boundary layer established in the flow of a slightly
viscous fluid about & body is normally considered an isolated
region wherein the effects of viscosity predominate and
outside of which the motion of the fluid is governed by the
laws of nonviscous motion. For large Reynolds numbers,
the boundary layer is assumed to be so thin that the non-
vigscous portion of the flow occurs as though there were no
boundary layer. This assumption is strictly correet in the
limit of infinite Reynolds number. For large but finite
Reynolds numbers, the growth of the boundary layer causes
the stream to be deflected away from the body surface.

This displacement effect of the boundary layer on the
nonviscous flow may properly be determined from the behav-
ior of the boundary layer itself, as established either by
oxperiment or by solution of the Prandtl boundary-layer
equations for laminar flow.

It does not follow, however, that this revised outer flow
may properly be used in conjunction with the Prandtl
oquations to yield an improvement in the boundary-layer
caleulation. Such an improvement may be obtained only
by use of & new set of equations that take into account the
variation of pressure across the boundary layer. This varia-
tion is neglected in the Prandtl equations. (See Alden’s
iterative solution for incompressible flat-plate flow, ref. 1.)

The customary definition of displacement thickness (ref. 2)
is applicable to two-dimensional flow and is expressed in the
following equation:

ﬁ oudy=pn (h—89 )

where h is some location well outside the boundary layer
(fig. 1) at which pu=p;u; and beyond which the low may be
considered nonviscous. (A list of symbols is provided in the
appendix.) Under the assumption of an extremely thin
boundary layer, A is so small that pyu; may be taken as the
evaluation at the body surface (y=0) of the nonviscous flow
obtained by neglecting the presence of the boundary layer.
Equation (1) equates the actual mass flow near the surface
with the mass flow which would be associated with a non-
viscous flow that terminates at 6* rather than extending to
the wall. * Thus, the nonviscous portion of the flow behaves
as if it occurred in the presence of a solid boundary given
by the displacement thickness §*(z). Equation (1) may be

solved for &*:
= ()
U

Ordinarily, theoretical boundary-layer solutions for pu/pyu;
asymptotically approach 1 for large values of Reynolds
number based on y. Therefore, displacement thickness is
often defined as follows-
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Figure 1.—Plane boundary-layer flow.

1 Supersedes NACA TN 2722, “Displacement Effect of & T hree-Dimensional Boundary Layer,” by Franklin K. Moore, 1652,
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F1gureE 2.—Three-dimensional boundary-layer flow (Cartesian
coordinates).

For three-dimensional boundary-layer flows, two lengths
characterizing mass-flow defects may be defined in terms of
the profiles of the two velocity components tangential to the

surface (fig. 2), .
5:—f (1—P1’ul ‘ )

6,Ef (1———
Py

and it is not clear which, if either, defines a “displacement
surface’” that properly describes the extent to which the non-
viscous flow is deflected by the boundary layer.

Of course, it is expected that there does exist a dlsplace-
ment surface for such flows. The analysis that follows
shows that such a surface may be described by a defining
equation more fundamental than equation (1).

The velocity and density profiles are assumed to be known
for the three-dimensional flows under consideration. Cases
for which this is true include: the laminar boundary layer
on yawed infinite cylinders, treated by Prandtl (ref. 3),
R. T. Jones (ref. 4), and Sears (ref. 5); and the laminar
boundary layer on & cone at a small angle of attack to a
supersonic stream (ref. 6). The displacement effect of these
flows will be treated specifically.

The investigation was conducted at the NACA Lewis
laboratory in February 1952.

THEORY
DEFINING RELATION FOR DISPLACEMENT SURFACE

The boundary-layer solution (assumed known) yields &
certain distribution of velocity v:(z,2) normal to the body
surface at the outer edge h(z,2) of the boundary layer, where
pt, and w may be taken essentially equal to py,u;, and w,
(see fig. 2). Under the assumption that the nonviscous flow
is altered only slightly by displacement, the most direct
way to compute this effect would be to suppose that the
nonviscous equations hold for y>#(x,2) and to impose the

following boundary condition on the normal velocity v, in

the outer flow:, '
vor=vu(z, 2) at y=~h(z, 2) 3)
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However, since the boundary conditions usually encountered
in nonviscous flow specify an impermeable surface, it is
convenient to recast the boundary condition given in equa-

‘tion (3) in answer to the question: What impermeable

surface y=A(z,z) would deflect a nonviscous fluid in such a
way as to produce & normal velocity satisfying condition (3)?
This fictitious surface may be called the displacement surface.

Because Az, 2) is imagined to be a stream surface, it is

necessary to specify that at y=A the resultant velocity

vector (u, », w) be tangent to the surface y=A. Thus, at
y=A the ratio of » to the magnitude of g which is defined as

the vector (u, w), must be set equal to the slope of the surface
y=A, measured in the direction of the vector g, or, equiva-

lently, equal to the component in the direction of ¢ of the
vector grad A. In vector notation, therefore, the normal

“velocity v which would be produced in a nonviscous fluid at

an impermeable surface y=A is ¢ - grad A. The vector ¢
may be obtained by evaluating the velocity vector of the
unrevised nonviscous flow at the body surface (1/-0), under
the related assumptions that the velocity vector varies only
slightly over distances of the order of the actual boundary-
layer thickness and that the revision required to take account
of displacement is slight. Thus, at y=A (see fig. 3),

Vor=(i - grad A

The increment in v, between A and. 2 is approximately
(h-0)00,,/0y; again, a thin boundary layer is assumed and
only the first term in a Taylor’s series is used.

To the order of approximation contemplated in this
analysis, Ov,/0y.may be obtained from the unrevised non-
viscous flow evaluated at y=0. Thus, the fictitious im-
permeable surface A would produce, at y=h, a normal

velocity (seefig. 3)
bv,,)
OY Jy=o

vo=q1 - grad A+(h—4)
Introducing this result into the boundary condition given in
equation (3) yields the defining relation for A(z, 2)

bv,,,

(vs))y-r=(h—A4) °+ gi-gradA (4)
The boundary-layer solution ylelds Va1

EXPRESSION OF A IN TERMS OF MASS-FLOW DEFECTS
The displacement surface A may be related to tho mass-
flow defects (eqs. (2)), which characterize the boundary
layer, as follows: In a Cartesian coordinate system (fig. 2),
the equation of continuity for both the boundary-layer and

nonviscous flow is
Opv Opu Opw ®)
oy oz Oz

Under the Prandtl boundary-layer assumptions, the Cartesian

. equations of motion, and hence equation (5), may be applied

in an orthogonal curvilinear coordinate system in which the
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surface of the body is given by y=0, provided the radius of
curvature of the body is everywhere large as compared with
the boundary-layer thickness. Integrating equation (5)
across the boundary layer yields

(pvo))ymn=— f (bbu bpw)d

- L ’ [% (pxtiy— p’u)-l—% (plwl——pfw)] dy—

fh Z’Pl’ul aPl’lDl)d
o \ 0z

or, inasmuch as % is outside the boundery layer where

pu=pyit; and pw=pw,

o)
pr (w1 (2524 22N 4 O (ot (puib) (6)
where §; and §; are the magss-flow defects defined in equations

(2). For the nonviscous flow, v,=0 at the body surf&ce
(y=0), and equation (5) becomes

bv,,) bpl’ul bPl'wl> '
= 7
3 Jyoe + Q)

Introducing equations (6) and (7) into equation (4) yields

2 (ot (A=) 4 [ (A—3)]=0  (8n)

In a Cartesian coordinate system, the displacement surface
is related to the mass-flow defects by equation (8a). When
cases arise for which other coordinate systems must be used,
the following generalization in vector form of equation (8a)
may be used:

h
diV [plg_lA—'J; (Plgl_Pg)dy]=o

where ¥ is the distance normal to the body surface and where
the divergence operator involves differentiation only with
respect to the two coordinates parallel to the body surface.

(8b)

EXAMPLES

Plane flow.—Equation (8a) may be integrated to. yield,
for plane flow (0/0z=0),

A=5:+ K

1

(9)

where K is a constant of integration.

The appearance of this constant means, in general, that
the revised boundary condition on the nonviscous flow near
the wall may be applied at any surface in the boundary-layer
region; for example, along the wall itself. Of course, if
there is a stagnation point on' the body where u, vanishes,

then K must be taken equal to zero and the revised boundary:
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condition must be imposed at the location A=s5,, at least
near the stagnation point.

3 . aV ~
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Figure 3.—Displacement surface in three-dimensional flow (Cartesian
coordinates).

Stagnation point of secondary flow.—In the vertical plane
of symmetry of the flow about & body of revolution at an
angle of attack, the circumferential velocity component
vanishes in the boundary layer as well as in the nonviscous
outer region. Such stagnation of the secondary motion
would occur in a variety of cases, in particular, wherever an
essentially three-dimensional flow has & plane of symmetry.
When wy is designated as the component of secondary flow
(circumferential velocity for a body of revolution) at the
outer edge of the boundary layer, and equation (8a) is
written in the form
ab [Plul a— 5:):l+’w1 Y [Pl a— 5:):|+P1 @a— 5:) =0 (10)
it is clear that A cannot equal §;, in general, even if both w,
and the boundary-layer proﬁle of w vanish, unless ow,;/0z
also vanishes.

Flow about yawed mﬂmte cylinder.—In the flow about a

.yawed infinite cylinder, there is a spanwise boundary-layer

velocity profile and an associated spanwise mass-flow defect.
(See refs. 3 to 5.) If z is taken in the chordwise direction
(fig. 4), the entire flow depends only on . Thus, derivatives
with respect to the spanwise coordinate z vanish; and, hence,
from equation (8a), the plane-flow result (eq. (9)) applies.
Accordingly, the spanwise mass-flow defect represented by
3 does not enter into the determination of the displacement
surface.

\ \<‘*§o |
. e
\

Figure 4.—Coordinate system for yawed infinite cylinder.



370

Fieaure 5.—Coordinate system for cone at angle of attack.

Supersonic flow about cone at small angle of attack.—
When the coordinate system shown in figure 5 is used,
equation (8b) becomes

sin 6 % I:plul:c (A—8=):|+a%o I:pl'wl (A—bg):|=0 1y

where
[l
P11
o=, (1 )
P1W1

Because the outer flow is conical, py;, %, and w; are functions
only of ¢; and equation (11) may be written

(12)

prvasin 02 [ 20— s | oo a—s)]=0 a3

Tn the case of conical outer flow, the associated boundary-
layer profiles show similarity of the Blasms type in meridional
planes (see ref. 7 or 8). Thus, in & meridional plane, A, &,
and & are proportional to +z. Tncorporation of this infor-
mation into equation (13) gives

. d
% p1iy Sin 0(A—8,)+a—¢ [plwl (A—«Sp):|=0

For & cone at small angle of attack «, u, is nearly equal to .

%, the velocity on the cone surface at zero angle of attack.
The quantities p;, A, &, and 3, vary only slightly with angle
of attack, whereas

w1=aﬁAa sin ©

where A; depends only on the cone vertex angle and the flow
Mach number and is defined in reference 6 as follows:

(15)

] 2z

e AT Y

The quantities 2, z, and % are in the notation of reference 9,
wherein they are tabulated

(14)
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To the first order in «, the substitution of equation (15)
into equation (14) yields the result
—— A (3,—52) co8 @

A= 5:-|- (16,

3sm0

The analysis of reference 6 yields the values of 8; and 3,.
Clearly; A differs from &, in the plane of symmetry ¢=0, =,

where the circumferential velocity w vanishes. It might,
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Figure 6.—Proportional rate of increase of displacement thickness
with angle of attack on cone.
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5 37”, A=3;. Figure
6 shows the proportional rate of increase of displacement
thickness A with angle of attack in the plane of symmetry
e=m at zero angle of attack. The corresponding rate of
increase of the mass-flow defect 8. is shown for comparison.
These curves are obtained from equation (16) and the
results of reference 6. The sine of the semivertex angle is
introduced as a factor primarily to permit presentation of
the case #=0 as the limit of an indeterminate form. For a
stream Mach number of 2, the change in displacement thick-
ness appears to be of the order of 50 percent larger than the
change in the meridional mass-flow defect.

however, be noted that in the plane =

371

CONCLUDING REMARKS

The foregoing analysis deals only with the displacement
effect of & known boundary layer on the nonviscous outer
flow, and hence can be applied only if the boundary-layer
behavior has been determined either theoretically or experi-
mentally. The latter approach might possibly find appli-
cation in the correction of nozzle contours for boundary-layer
development. In this connection, perhaps, it should be
noted that the analysis is not restricted to laminar flows.

Lewis Fuiaar ProrursioN LABORATORY
Natrionar Apvisory COMMITTEE FOR AERONATUTICS
CreveLanp, Onro, March 6, 19562

APPENDIX—SYMBOLS
The following symbols are used in this report: a:} . .
A function of cone angle and Mach number | z coordinates in body surface -
(eq. (15)) Y coordinate normal to surface
L height above body surface at which p, u, | 4 angle of attack
w=p1, U, Wy, and beyond which nonviscous | A .height above body of displacement surface -
equations apply (eq. (3)) 5* displacement thickness in plane flow
M, stream Mach number 8s length characterizing mass-flow defect of
q velocity vector composed of components paral- u-profile (egs. (2) and (12))

lel to body surface u, w

5: length characterizing mass-flow defect of

° velocity component in z-direction w-profile (eq. (12))
7 meridional velocity component at surface of | 5, length characterizing mass-flow defect of
cone at zero angle of attack w-profile (eq. (12))
» velocity component in y-direction 9 semivertex angle of cone
Uy boundary-layer solution for velocity normal to | , density
surface, evaluated at outer edge of boundary | angular coordinate (fig. 5)
layer .
Vos nonviscous solution for veloeity normal to | Subscript 1 denotes evaluation of nonviscous flow at body
surface, evaluated near the surface surface, taken equivalent to conditions at outer edge of
w velocity component in z-direction boundary layer of infinitesimal thickness.
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